Posted in Ֆիզիկա 9

Էլեկտրական հոսանք։ Հոսանքի ազդեցությունները

Հաղորդիչներում լիցքավորված մասնիկները՝ մետաղներում էլեկտրոնները, էլեկտրոլիտներում` իոնները, կարող են ազատորեն տեղափոխվել մարմնի մի մասից մյուսը: Այդ լիցքավորված մասնիկներին անվանում են ազատ լիցքակիրներ: Էլեկտրական դաշտի բացակայության դեպքում ազատ լիցքակիրները հաղորդիչում կատարում են քաոսային (ջերմային) շարժում, ուստի կամայական ուղղությամբ նրանք տեղափոխում են  նույն քանակի լիցքեր: Էլեկտրական դաշտի առկայության դեպքում, նրա ազդեցության տակ, ազատ լիցքակիրները ջերմային շարժման հետ մեկտեղ կատարում են նաև ուղղորդված շարժում և այդ ուղղությամբ ավելի շատ լիցք տեղափոխվում:

electron-mobility1

Լիցքավորված մասնիկների ուղղորդված շարժումն անվանում են էլեկտրական հոսանք:

Նյութի մեջ էլեկտրական հոսանքի գոյության համար անհրաժեշտ են`

1.ազատ լիցքակիրներ, որոնք կարող են ազատ տեղաշարժվել մարմնի ողջ ծավալով,

2.էլեկտրական դաշտ, որը էլեկտրական ուժով կազդի ազատ լիցքակիրների վրա և կստիպի շարժվել որոշակի ուղղությամբ:

Էլեկտրական հոսանքն ունի ուղղություն: Պայմանականորեն, որպես հոսանքի ուղղություն համարել են այն ուղղությունը, որով շարժվում են դրական լիցքավորված մասնիկները:

current (1)

Մետաղներում ազատ լիցքակիրները բացասական լիցք ունեցող մասնիկներն են՝ էլեկտրոնները, հետևաբար մետաղում հոսանքի ուղղությունը հակադիր է նրանց ուղղորդված շարժման ուղղությանը:

Էլեկտրոլիտներում հոսանքի ուղղությունը համընկնում է դրական իոնների և հակառակ է՝ բացասական իոնների ուղղորդված շարժման ուղղությանը: Հաղորդիչներում շարժվող ազատ լիցքակիրներն անհնար է տեսնել: Հետևաբար, հոսանքը հայտնաբերվում է իր ազդեցություններով, որոնք չորսն են.

1. Ջերմային՝ հոսանքի անցնելու ժամանակ հաղորդիչը տաքնում է:

napryag1
heat1

2.Քիմիական՝ էլեկտրոլիտներով՝ աղերի, թթուների, հիմքերի լուծույթներով հոսաքնի անցնելու ժամանակ տեղի է ունենում նյութի քիմիական բաղադրության  փոփոխություն, առաջում է նստվածք և մաքուր մետաղներ: 

0011-011-KHimicheskoe-dejstvie-elektricheskogo-toka-Vpervye-bylo-otkryto-v-1800g

3.Մագնիսական՝ հաղորդիչը, որի միջով հոսանք է անցնում ձեռք է բերում մագնիսի հատկություններ և սկսում է դեպի իրեն ձգել երկաթյա առարկաներ, ազդում է մագնիսական սլաքի վրա:

amper1

4.Կենսաբանական՝ կենդանի մարմնով անցնելու դեպքում հոսանքն առաջացնում է մկանային կծկում, արագացնում է արյան հոսքը անոթներով և նյութափոխանակությունը՝ հյուսվածքներում:

tumblr_inline_naumjypHGD1skr4va

Փորձը ցույց է տալիս, որ էլեկտրական հոսանքի բոլոր ազդեցություններից միայն մագնիսականն է, որ դրսևորվում է միշտ:

Թեմատիկ հարցեր և խնդիրներ

1․Ինչպիսի՞ շարժում են կատարում ազատ էլեկտրոնները մետաղե հաղորդչում, երբ այն անջատված է գալվանական էլեմենտից:

  • չեն շարժվում
  • քաոսային և միաժամանակ ուղղորդված
  • միայն քաոսային
  • միայն ուղղորդված

2․Շիկացման թելիկով հոսանքի անցման ժամանակ հոսանքի  ո՞ր ազդեցությունն է՝ ջերմային, կենսաբանական, քիմիական, թե մագնիսական, նպաստում լուսարձակման  առաջացմանը:

_elektrik_devresi_herodevyapilir_7-20140117-170926.gif
  • քիմիական
  • մագնիսական
  • կենսաբանական
  • ջերմային

3․Նկարում հոսանքի ո՞ր ազդեցությունն է պատկերված:

tumblr_inline_naumjypHGD1skr4va.jpg
  • քիմիական
  • մագնիսական
  • կենսաբանական
  • ջերմային

4․Դրական իոնների ուղղորդված շարժման ժամանակ հոսանք կառաջանա, թե՞ չի առաջանա:

image004.jpg

Կառաջանա

5․Ինչո՞վ (ջրով, սովորական կրակմարիչով, թե չոր ավազով) կարելի է հանգցնել հոսանքի աղբյուրին միացված հաղորդչում առաջացած կրակը:

Մեկից ավելի պատասխանի դեպքում դրանք անջատեք ստորակետով:

1422870101_3c88da41c435292bb58bfd3e542ba43d0e1afdc3_726.jpg

Չոր ավազով, սովորական կրակմարիչով

6․Ո՞ր մասնիկների շարժումով է պայմանավորված էլեկտրական հոսանքը աղաջրի լուծույթում:

0011-011-KHimicheskoe-dejstvie-elektricheskogo-toka-Vpervye-bylo-otkryto-v-1800g.jpg
  • էլեկտրոնների
  • նեյտրոնների
  • դրական իոնների
  • բացասական իոնների

7․Ո՞րն է/որո՞նք են նախադասոության ճիշտ շարունակություն(ներ)ը:

Հաղորդալարում էլեկտրական հոսանքի ուղղությունը՝

1) դրական մասնիկների ուղղորդված շարժման ուղղությունն է
2) բացասական մասնիկների ուղղորդված շարժման ուղղությունն է
3) ազատ էլեկտրոնների ուղղորդված շարժման ուղղությունն է
4) ազատ էլեկտրոնների ուղղորդված շարժման հակառակ ուղղությունն է

Posted in Ֆիզիկա 9

Ատոմների կառուցվածքը. Էլեկտրականացման բացատրությունը. Լիցքի պահպանման օրենքը.

Էլեկտրական երևույթները բացատրելու համար անհրաժեշտ է պարզել ատոմի կառուցվածքը: Այդ ուղղությամբ առաջին հայտնագործությունը կատարեց անգլիացի գիտնական Ջ. Թոմսոնը: 1898 թվականին նա հայտնաբերեց ատոմի կազմի մեջ մտնող և տարրական լիցք կրող փոքրագույն մասնիկը՝ էլեկտրոնը:

Էլեկտրոնը անհնար է «զատել» իր լիցքից, որը միշտ միևնույն արժեքն ունի: Տարբեր քիմիական տարրերի ատոմներում պարունակվում են տարբեր թվով էլեկտրոններ: Շարունակելով ատոմի կառուցվածքի բացահայտման հատուկ փորձերը, անգլիացի գիտնական Էռնեստ Ռեզերֆորդը 1911թ.-ին ներկայացրեց ատոմի կառուցվածքի վերաբերյալ իր մոդելը, որն անվանեցին մոլորակային:

Ըստ Ռեզերֆորդի նյութի՝ յուրաքանչյուր ատոմ կարծես փոքրիկ Արեգակնային համակարգ է, որի կենտրոնում դրականապես լիցքավորված միջուկն  է: Էլեկտրոնները պտտվում են միջուկի շուրջը նրա չափերից շատ ավելի մեծ հեռավորությունների վրա, ինչպես մոլորակները Արեգակի շուրջը:

Տարբեր տարրերի ատոմները միմյանցից տարբերվում են իրենց միջուկի լիցքով և այդ միջուկի շուրջը պտտվող Էլեկտրոնների թվով: 

Screenshot_2.png

Դ. Ի. Մենդելեևի քիմիական տարրերի պարբերական աղյուսակում տարրերի կարգաթիվը՝ Z-ը, համընկնում է սովորական վիճակում տվյալ տարրերի ատոմի մեջ պարունակվող էլեկտրոննեի թվի հետ, հետևաբար էլեկտրոնների գումարային լիցքը ատոմում հավասար է՝

qէլ.=−Z⋅e

Միջուկի լիցքը կլինի՝

qմիջ.=+Z⋅e

Ատոմի միջուկը ևս բարդ կառուցվածք ունի. նրա կազմության մեջ մտնում են տարրական դրական լիցք կրող մարմիններ՝ պրոտոններ:

qp=e=1,6⋅10−19կլ

Պրոտոնի զանգվածը մոտ 1840 անգամ մեծ է էլեկտրոնի զանգվածից: Դատելով միջուկի լիցքից կարելի է պնդել. Ատոմի միջուկում պրոտոնների թիվը հավասար է տվյալ քիմիական տարրի կարգահամարին՝ Z-ին: Ինչպես ցույց տվեցին հետազոտությունները, բացի պրոտոններից միջուկի պարունակում է նաև չեզոք մասնիկներ, որոնց անվանում են նեյտրոններ: Նեյտրոնի զանգվածը փոքր ինչ մեծ է պրոտոնի զանգվածից: Նեյտրոնների թիվը միջուկում նշանակում են N տառով: Միջուկի պրոտոնների՝  Z թվի և նեյտրոնների N թվի գումարին անվանում են միջուկի զանգվածային թիվ և նշանակում A տառով:

A=Z+N, որտեղից՝ N=A−Z

A-ն կարելի է որոշել Մենդելեևի աղյուսակից՝ կլորացնելով տրված տարրի հարաբերական ատոմային զանգվածը մինչև ամբողջ թիվ: Այսպիսով, ատոմի կենտրոնում դրական լիցք ունեցող միջուկն է, որը կազմված է Z պրոտոնից և N նեյտրոնից, իսկ միջուկի շուրջը, եթե ատոմը չեզոք է, պտտվում են Z Էլեկտրոններ:

Որոշ դեպքերում ատոմները կարող են կորցնել մեկ կամ մի քանի էլեկտրոններ: Այդպիսի ատոմն այլևս չեզոք չէ, այն ունի դրական լիցք և կոչվում է դրական իոն: Հակառակ դեպքում, երբ ատոմին միանում է մեկ կամ մի քանի էլեկտրոն, ատոմը ձեռք է բերում բացասական լիցք և վեր է ածվում բացասական իոնի:

p-08a-2.gif

Էլեկտրական դաշտ

Լիցքավորված մարմինների փոխազդեցությունը ներկայացնող փորձերից երևում է, որ նրանք ի վիճակի են միմյանց վրա ազդել տարածության վրա: Ընդ որում, որքան մոտիկ են էլեկտրականացված մարմիններն, այնքան ուժեղ է նրանց միջև փոխազդեցությունը:

Screenshot_5.png

Նմանատիպ փորձեր կատարելով անօդ տարածության մեջ, երբ պոմպի միջոցով անոթի միջից օդը դուրս էր մղված, գիտնականները համոզվեցին, որ էլեկտրական փոխազդեցություն հաղորդելու գործին օդը չի մասնակցում:

Screenshot_6.png

Լիցքավորված մարմինների փոխազդեցության մեխանիզմն իրենց գիտական աշխատանքներում ներկայացրեցին անգլիացի գիտնականներ Մ. Ֆարադեյը և Ջ. Մաքսվելլը: Նրանց ուսմունքի՝ մերձազդեցության տեսության համաձայն, լիցքավորված մարմիններն իրենց շուրջը ստեղծում են էլեկտրական դաշտ, որի միջոցով էլ իրագործվում է էլեկտրական փոխազդեցությունը: Էլեկտրական դաշտը մատերիայի հատուկ տեսակ է, որը գոյություն ունի ցանկացած լիցքավորված մարմնի շուրջ: Մեր զգայարանների վրա այն չի ազդում, հայտնաբերվում է հատուկ սարքերի օգնությամբ:

Էլեկտրական դաշտի հիմնական հատկություններն են.

1. Լիցքավորված մարմնի էլեկտրական դաշտը որոշ ուժով ազդում է իր ազդեցության գոտում հայտնված ցանկացած այլ լիցքավորված մարմնի վրա:

zar1.gif
zar2.gif

2. Լիցքավորված մարմնի էլեկտրական դաշտը մարմնին մոտ տիրույթում ուժեղ է, իսկ նրանցից հեռանալիս թուլանում է:  

images.jpg

Այն ուժը, որով էլեկտրական դաշտն ազդում է լիցքավորված մարմնի վրա, անվանում են էլեկտրական ուժ՝ F էլ: Այդ ուժի ազդեցության տակ էլեկտրական դաշտում հայտնված լիցքավորված մասնիկը ձեռք է բերում արագացում, որն ըստ Նյուտոնի II օրենքի հավասար է a=F*m, որտեղ m−ը մասնիկի զանգվածն է: Էլեկտրական դաշտը կարելի է գրաֆիկորեն պատկերել ուժագծերի օգնությամբ: Էլեկտրական դաշտի ուժագծերն այն ուղղորդված գծերն են, որոնք ցույց են տալիս դրական լիցքավորված մասնիկի վրա ազդող ուժի ուղղությունն այդ դաշտում:

silovielinii2.jpg
electric-field.jpg
image002.png

Նկարում պատկերված են կետային լիցքերի և լիցքավորված թիթեղների էլեկտրական դաշտի ուժագծերը:

Եթե մասնիկի լիցքը դրական է, ապա ուժագծերի ուղղությամբ շարժվելիս նրա արագությունը կաճի, հակառակ ուղղությամբ շարժվելիս՝ կնվազի: Իսկ եթե մասնիկի լիցքը բացասական է, ապա նրա արագությունը կաճի ուժագծերին հակառակ շարժման դեպքում:

Թեմատիկ հարցեր և խնդիրներ՝

1. Բերե՞ք հաղորդիչների օրինակներ։

Բոլոր մետաղները, հողը, աղերի, թթուների և հիմքերի ջրային լուծույթներն էլեկտարակնության հաղորդիչներ են։ Մարդու մարմինը նույնպես հաղորդիչ է։

2. Ո՞ր նյութերն են կոչվում դիէլեկտրիկներ (մեկուսիչներ), բերե՞ք օրինակներ։

Մեկուսիչներն այն մարմիններն են, որոնցով էլեկտրական լիցք հաղորդվում։
Օրինակներ՝ Էբոնիտ, սաթ, հախճապակի, ռետին, տարբեր պլաստմասսաներ, մետաքս:

3. Ինչի՞ համար են օգտագործվում էլեկտրաչափերն ու էլեկտրացույցերը։

4.Նկարագրե°ք լիցքը կիսելու հնարավորություն տվող փորձ։

Էլեկտրական լիցքը հաղորդելով մի մարմնից մյուսին, կարելի է լիցքը բաժանել մասերի, օրինակ՝ կիսել: Դրա համար անհրաժեշտ է 2 միատեսակ էլեկտրաչափ. մեկը՝ լիցքավորված, մյուսն՝ էլեկտրաչեզոք, ինչպես նաև  հաղորդիչ՝ մետաղյա ձող՝ էլեկտրամեկուսիչ բռնակով: Եթե էլեկտրաչափերի գնդերը միացվեն ձողի միջոցով, ապա, ինչպես ցույց է տալիս փորձը, I էլեկտրաչափի լիցքը կբաժանվի 2 հավասար մասի. էլեկտրական լիցքի կեսը I էլեկտրաչափից կանցնի II-ին: Եթե էլեկտրաչափի գնդերը տարբեր չափեր ունենան, ապա լիցքը հավասար չի կիսվի. ավելի մեծ չափեր ունեցող գնդին կանցնի լիցքի ավելի մեծ բաժինը:

5.Կարելի՞ է արդյոք լիցքն անվերջ փոքրացնել։

Լիցքը հնարավոր չէ անվերջ փոքրացնել, քանի որ փորձերը ցույց են տվել, որ լիցքն ունի բաժանման սահման:

6.Ի՞նչ է հողակցումըի՞նչ հատկության վրա է հիմնված։


Իր վրա գտնվող մարմինների համեմատությամբ երկրագունդը հսկա է, հետևաբար, նրա հետ հպման դեպքում լիցքավորված մարմինն իր լիցքը գրեթե ամբողջությամբ կտա երկրագնդին՝ կլիցքաթափվի: Այս երևույթը կոչվում է հողակցում:

7.Ո՞ր լիցքն են անվանում տարրական։

Ամենափոքր լիցքի բացարձակ մեծությունը անվանում ենք տարրական լիցք։

8.Ո՞վ և ե՞րբ է հայտնագործել էլեկտրոնը։

Էլեկտորնը հայտնաբերել է  անգլիացի գիտնական Ջ․ Թոմսոնը 1898 թվականին։

9.Ի՞նչ լիցքով է լիցքավորված էլեկտրոնը:

Էլեկտրոնը լիցքավորված է բացասական լիցքով, որի արժեքը միշտ նույնն է, այն անհնար է ավելացնել կամ նվազեցնել, առավել ևս զատել իր լիցքից։

10.Ատոմի ներսում ինչի՞ շուրջն են պտտվում էլեկտրոնները։

Ատոմի ներսում բացասական լիցքավորված էլեկտրոնները պտտվում են ատոմի դրական լիցքավորված միջուկի շուրջը։

11.Ի՞նչ լիցքով է լիցքավորված ատոմի միջուկը։

Ատոմի միջուկը լիցքավորված է դրական լիցքով:

12.Ապացուցե’ք, որ ամբողջական ատոմը չեզոք է։

Ատոմում էլեկտրոնների ընդհանուր լիցքը գումարելով ատոմի միջուկի լիցքին, կստանանք 0։ Այդ ամենն էլ ապացուցում է որ ատոմը ամբողջությամբ չեզոք է։ Չեզոք են նաև նյութի մոլեկուլները, քանի որ կազմված են չեզոք ատոմներից։

13.Միմյանցից ինչո՞վ են տարբերվում ալֆաբետա և գամմաճառագայթումները։

Ալֆա – մասնիկը դրական լիցքավորված մասնիկ է, կազմված 2 պրոտոնից և 2 նեյտրոնից, ունեն կրկնակի դրական լիցք և հարաբերորեն մեծ զանգված, որը հավասար է 4 զանգվածի ատոմական միավորներին, իսկ բացարձակ արժեքը գերազանցում է էլեկտրոնի զանգվածին 7300 անգամ:

Բետա մասնիկները, ռադիոակտիվ ատոմի միջուկից ճառագայթվող, բարձր էներգիա և մեծ արագություն ունեցող էլեկտրոններ կամ պոզիտրոններ են: Բետա մասնիկները իոնացնող ճառագայթման ձևերից են, կոչվում են նաև բետա ճառագայթներ: Բետա մասնիկների առաջացումը կոչվում է բետա տրոհում:

Գամմա ճառագայթները էլեկտրամագնիսական կարճ ալիքներ են: Գամմա ճառագայթները դրսևորում են նաև մասնիկային հատկություններ: Գամմա ճառագայթները առաջանում են ռադիոակտիվ միջուկների, տարրական մասնիկների տրոհման, մասնիկ և հակամասնիկ զույգերի անիհիլացման, ինչպես նաև նյութի միջով լիցքավորված մասնիկների արագացող շարժման դեպքում:

14.Բերե՜ք ռադիոակտիվ նյութերի օրինակներ

Ռադիոակտիվ նյութերից է ուրանը

15.Քիմիական տարբեր տարրերի ատոմներն ինչո՞վ են տարբերվում միմյանցից։

Տարբեր տարրերի ատոմները միմյանցից տարբերվում են իրենց միջուկի լիցքով և այդ միջուկի շուրջը պտտվող Էլեկտրոնների թվով: 

17.Իրենցից ի՞նչ են ներկայացնում դրական ու բացասական իոնները։

Իոնները էլեկտրականապես լիցքավորված մասնիկներ են, որոնք առաջանում են, երբ ատոմները կամ ատոմների խմբերը էլեկտրոններ կամ լիցքավորված այլ մասնիկներ են ձեռք բերում կամ կորցնում: Դրական իոնները Մայքլ Ֆարադեյը անվանել է կատիոններ, բացասականները ՝ անիոններ:

18.Ինչպե՞ս են դրանք առաջանում։

Իոնները էլեկտրականապես լիցքավորված մասնիկներ են, որոնք առաջանում են, երբ ատոմները կամ ատոմների խմբերը էլեկտրոններ կամ լիցքավորված այլ մասնիկներ են ձեռք բերում կամ կորցնում:

19.Ի՞նչ է էլեկտրական դաշտը։

Էլեկտրական դաշտը մատերիայի հատուկ տեսակ է, որը գոյություն ունի ցանկացած լիցքավորված մարմնի շուրջ:

20.Թվարկե՜ք էլեկտրական դաշտի հիմնական հատկությունները։

Էլեկտրական դաշտի հիմնական հատկություններն են.

1. Լիցքավորված մարմնի էլեկտրական դաշտը որոշ ուժով ազդում է իր ազդեցության գոտում հայտնված ցանկացած այլ լիցքավորված մարմնի վրա:

2. Լիցքավորված մարմնի էլեկտրական դաշտը մարմնին մոտ տիրույթում ուժեղէիսկ նրանցից հեռանալիս թուլանում է:   

21.Ի՞նչ են նշում էլեկտրական դաշտի ուժագծերը։

Էլեկտրական դաշտի ուժագծերն այն ուղղորդված գծերն են, որոնք ցույց են տալիս դրական լիցքավորված մասնիկի վրա ազդող ուժի ուղղությունն այդ դաշտում:

22..Ո՞ր դեպքում է էլեկտրական դաշտը մեծացնում մասնիկի արագությունը ևո՞ր դեպքում փոքրացնում այն։

Եթե մասնիկի լիցքը դրական է, ապա ուժագծերի ուղղությամբ շարժվելիս նրա արագությունը կաճի, հակառակ ուղղությամբ շարժվելիս՝ կնվազի: Իսկ եթե մասնիկի լիցքը բացասական է, ապա նրա արագությունը կաճի ուժագծերին հակառակ շարժման դեպքում:

Posted in Ֆիզիկա 9

Էլեկտրական լիցք, Էլեկտրացույց, Էլեկտրաչափ, Էլեկտրական լիցքի բաժանելիություն

Դեռ հին ժամանակներից հայտնի էր, որ մի մարմինը մյուսով շփելիս՝ օրինակ, սաթը բրդով կամ ապակին մետաքսով, նրանք ձեռք են բերում այլ մարմիններ դեպի իրենց ձգելու հատկության: Ակնհայտորեն երևում է նաև, որ ձգողության այդ ուժը բազմաթիվ անգամ գերազանցում է նույն մարմինների գրավիտացիոն փոխազդեցության ուժը: Այս նոր փոխազդեցությանն անվանում են էլեկտրական (հուներեն «էլեկտրոն» բառը նշանակում է սաթ), փոխազդող մարմիններին՝ էլեկտրականացած, իսկ պրոցեսը՝ էլեկտրականացում:

Մարմինների էլեկտրական փոխազդեցությունը քանակապես բնութագրող ֆիզիկական մեծությունը կոչվում է էլեկտրական լիցք և նշանակվում q տառով: ՄՀ-ում էլեկտրական լիցքի միավորը Կուլոնն է (1 Կլ)՝ ի պատիվ Շառլ Կուլոնի (1736−1806 թթ.), ով ձևակերպել է էլեկտրական լիցքերի փոխազդեցության օրենքը:

Ինչպես ցույց տվեցին փորձերը, բրդով շփված 2 սաթե կամ մետաքսով շփված 2 ապակե միատեսակ ձողերը իրար վանում են, իսկ ապակե և սաթե ձողերը՝ իրար ձգում:  Նշանակում է գոյություն ունի երկու տեսակի էլեկտրական լիցք: Ամերիկացի ֆիզիկոս Բենջամին Ֆրանկլինի առաջարկով մետաքսով շփված ապակու վրա առաջացած լիցքն անվանեցին դրական և վերագրեցին «+» նշան, իսկ բրդով շփված սաթի վրա առաջացած լիցքին՝ բացասական և վերագրեցին «−» նշան: Այս նշանակումից հետո կարելի է սահմանել լիցքավորված մարմինների փոխազդեցության կանոնը։

Նույն նշանի (կամ նույնանուն) լիցքեր ունեցող մարմինները փոխադարձաբար վանում են, իսկ հակառակ նշանի (կամ տատանուն) լիցքեր ունեցող մարմինները փոխադարձաբար ձգում են միմյանց:

Էլեկտրական փոխազդեցության ուժի գոյությունը պայմնավորված է մարմինների վրա ստատիկ լիցքերի առկայությամբ, այդ ուժի ուղղությանը՝ լիցքերի նշանով: Փորձը ցույց է տալիս, որ լիցքավորված մարմինների փոխազդեցության ուժի մեծությունը կախված է նրանց լիցքերի մեծություններից և լիցքավորված մարմինների միջև եղած հեռավորությունից:

Երկու անշարժ, կետային (փոքր չափեր ունեցող) լիցքերի փոխազդեցության ուժի մեծությունը ուղիղ համեմատական է լիցքերի մոդուլների արտադրյալին և հակադարձ համեմատական է դրանց միջև հեռավորության քառակուսուն:  F=Kq1q2/R, որտեղ q1-ը և q2-ը փոխազդող մարմինների էլեկտրական լիցքերի մեծություններն են, R-ը՝ նրանց միջև եղած հեռավորությունը, իսկ k-ն համեմատականության գործակից է, հաստատուն մեծություն, որը հավասար է k=9⋅109Ն⋅մ2/Կլ2  

Փորձնական ճանապարհով ստացված այս օրենքը կոչվում է Կուլոնի օրենք:

1. Ինչպիսի՞ ուժերի եք ծանոթ ֆիզիկայի նախորդ դասընթացից։

Ձգողականության ուժ, էլեկտրամագնիսական ուժ, միջուկային ուժ, շփման ուժ։

2. Ինչո՞ւ ապակե բաժակի և թղթի կտորների գրավիտացիոն փոխազդեցությունը նկատելի չէ։

Ապակե բաժակի և թղթի կտորների գրավիտացիոն փոխազդեցությունը նկատելի չէ, որովհետև այն շատ փոքր է։

3․ Ինչպե՞ս են փոխազդում շփված պլաստմասե գրիչը և թերթի շերտը:

Երբ պլաստմասե գրիչը և թերթի շերտը փոխազդում են գրիչը ձգում է թղթի շերտը։

4․ Ինչպե՞ս են փոխազդում նույն ձողով շփված թղթի երկու շերտերը:

Նույն ձողով շփված թղթի երկու շերտերն իրար վանում են։

5․ Ինչպե՞ս է կոչվում իրար շփելիս մարմինների միջև ծագող նոր բնույթի ուժերը:

Իրար շփելիս մարմինների միջև ծագող նոր բնույթի ուժը կոչվում է էլեկտրականացում։

6․ Ինչպե՞ս է առաջացել <<էլեկտրականություն>> անվանումը։

Հույները սաթն անվանում են <<Էլեկտրոն>>, որից էլ ծագել է <<Էլեկտրականություն>> բառը։

7. Էլեկտրական լիցքերի ի՞նչ տեսակներ կան:

Էլեկտրական լիցքերի երկու տեսակներն են՝ դրական և բացասական։

8.Ինչպե՞ս են փոխազդում նույն նշանի լիցք ունեցող մարմինները:

Նույն նշանի լիցք ունեցող մարմինները իրարն վանում են։

9. Ձևակերպեք Կուլոնի օրենքը:

Երկու անշարժ կետային լիցքերի էլեկտրական փոխազդեցության ուժի մոդուլն ուղիղ համեմատական է լիցքերի մոդուլների արտադրյալին և հակադարձ համեմատական է դրանց միջև հեռավորության քառակուսուն։

10. Որն է էլեկտրական լիցքի միավորը ՄՀ-ում։

 Էլեկտրական լիցքի միավորը ՄՀ-ում կոչվում է 1Կլ։